如何使用 ELISAcalc 软件绘制标准曲线 (二次曲线回归为例) 数据处理

酶联免疫吸附法(ELISA)由于其易于操作,可以简单地测出样本中有多少蛋白质、多肽、抗体, 是实验室比较常用的一种检测方法。而这种简单的分析方法的核心,就是标准曲线。没有它, 我们的实验就变成了一个二元的"**是/不是**"测试。有了它,我们可以深入研究生物反应的细 节。

有多少人对 ELISA 标准曲线拟合头痛?!今天将以二次曲线回归为例,讲解如何使用 ELISAcalc 软件绘制标准曲线,具体实验请选择合适的拟合方式(以回归系数最接近 1.0 为准)

Step1: 打开软件 ELISACalc, 界面如下:

Step2: 输入数据:

① 标准品有 S1, S2, S3, S4, S5, S6, S7, 7个浓度。(0孔也就是 Blank 值不用输入)
② "X"代表浓度/剂量, "Y"代表 OD/反应值。在运行软件的 X、Y 列中,依次输入相对应的值,如下图所示:

1归/拟合模型(M)		X (浓度/剂量)	¥(反应值)	▲ 清除(Z)
i线回归	1	5000, 00000	2.14000	
	2	2500.00000	1.48000	
	3	1250.00000	0.97000	
	4	625.00000	0.55000	
	5	312,00000	0.34000	
扣际本低固浦输入本底	6	156, 25000	0.17000	
数据列 Y数据列	7	78, 12000	0.10000	
~转换 _ 不转换 _	8			
X值 名Y值	10	-		
	11			
回归/拟合(B)	12			
	13			
	14			
	15			
	16	Ĩ		
	17 ×			
夏制心	18			
- 湯中(m) ≢8時(m)	19			

Step3:回归/拟合模型(M),下拉选择二次曲线回归,X数据列下拉选择对数(10为底), Y数据列下拉选择对数(10为底),如下图所示:

Step4: 点击"回归/拟合",显示标曲。

Step5: 点击"回归方程",可以得到二次曲线回归方程以及 r2 值等。(同一个试剂盒可以用多种方式进行拟合,例如:四参数、直线。最终根据 r2 值大小判断曲线的拟合程度,越接近 1,拟合程度越好。)

回归/拟合模型(M)	二次曲线回归				
二次曲线回归	▼ 方程: y = a · a = b = °_{a =} =	+ b*x + c*x^2 -3.23300 1.38635 -0.11372			
 □ 扣除本底(B) 请输入本届 ×数据列 Y数据列 		0.99862			
对数(10为厘 → 对数(10为厘	- X	¥−反应值	⊻-平均值 CV(%)	⊻─计算值	⊻−残差
名 × 値 名 × 値 曲銭(B)	1.8928 2.1938 2.4942 2.7959 3.0969 3.3979	-1.0000 -0.7696 -0.4685 -0.2596 -0.0132 0.1703		-1.0164 -0.7389 -0.4827 -0.2459 -0.0303 0.1647	-0.0164 0.0306 -0.0141 0.0138 -0.0170 -0.0055
回归方程(8)	3, 6990	0.3304		0.3391	0.0087
由X计算X 由X计算Y	/). 00199			
复制C) 粘贴(P)					
退出(Q) 帮助(H	nt				

Step6:标准曲线已知,并且"X"浓度/剂量和"Y"OD/反应值是已知的。根据标准曲线 求浓度,也就是"由Y计算X",来计算样本浓度。在空格中输入样品的OD值,回车或点击 "计算",即能计算对应的浓度。(点击"复制"按钮可以将结果全部复制下来,粘贴到EXCEL 表格中进行下一步做图分析。)

ELISA Calc 回归/拟合计算程序 - v	0.2		×
回归/拟合模型(M)	Y值	计算(L)	清除[2]
,	Y值	│ ×値	
 □ 扣除本底(B) □ 払除本底(B) □ 法数据列 ○ Y数据列 ○ 対数(10 为原 → ○ 対数(10 为原 → ○ 対数(10 为原 → ○ 名 \> (值 	1.167 0.843 1.061 1.69 1.42	1750.689741, 886587041.240407 1079.474094, 1437865759.356486 1514.106355, 1025118765.734494 3183.706296, 487525761.827112 2386.412095, 650406876.729454	
曲线(3)			
回归方程(B)			
由Yit算X 由Xit算Y			
复制(C) 粘贴(P)			
退出(2) 帮助(出)			

数据处理需注意的问题

- 1. 二次曲线计算的结果会有两个解,要舍掉其中一个偏离度大的。
- 2. Log-logit 的拟合方法是用于竞争法的, 竞争法也可以用四参数或五参数的方式进行拟合。
- 样品的浓度等指标是根据标准曲线计算出来的,所以首先要把做标准曲线看作是比做正式 实验还要重要的一件事,否则后面的实验结果无从谈起。
- 4. 设置标准曲线样品的标准浓度范围要有一个比较大的跨度,并且要能涵盖你所要检测实验样品的浓度,即样品的浓度要在标准曲线浓度范围之内,包括上限和下限。而对于呈S型的标准曲线,尽量要使实验样品的浓度在中间坡度最陡段,即曲线几乎成直线的范围内。
- 5. 最好采用倍比稀释法配制标准曲线中的标准样品浓度, ELISA 试剂盒这样就能够保证标准 样品的浓度不会出现较大的偏离。
- 6. 检测标准样品时,应按浓度递增顺序进行,以减少高浓度对低浓度的影响,提高准确性。
- 7. 标准曲线的样品数一般为7个点,但至少要保证有5个点。
- 8. 做出的标准曲线相关系数因实验要求不同而有所变动,但一般来说,相关系数 R 至少要大于 0.98,对于有些实验,至少要 0.99 甚至是 0.999。

要想绘制出合格的标准曲线、使用好标准曲线,真心不易,必须将各个方面的条件都考虑进去, 即对标准曲线的绘制也实行质量控制,只有这样,才能得出理想的标准曲线。